Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. Significance:The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.more » « less
- 
            null (Ed.)Multi- and hyperspectral imaging modalities encompass a growing number of spectral techniques that find many applications in geospatial, biomedical, machine vision and other fields. The rapidly increasing number of applications requires convenient easy-to-navigate software that can be used by new and experienced users to analyse data, and develop, apply and deploy novel algorithms. Herein, we present our platform, IDCube Lite, an Interactive Discovery Cube that performs essential operations in hyperspectral data analysis to realise the full potential of spectral imaging. The strength of the software lies in its interactive features that enable the users to optimise parameters and obtain visual input for the user in a way not previously accessible with other software packages. The entire software can be operated without any prior programming skills allowing interactive sessions of raw and processed data. IDCube Lite, a free version of the software described in the paper, has many benefits compared to existing packages and offers structural flexibility to discover new, hidden features that allow users to integrate novel computational methods.more » « less
- 
            Abstract Chemical diversification of hybrid organic–inorganic glasses remains limited, especially compared to traditional oxide glasses, for which property tuning is possible through addition of weakly bonded modifier cations. In this work, it is shown that water can depolymerize polyhedra with labile metal–ligand bonds in a cobalt‐based coordination network, yielding a series of nonstoichiometric glasses. Calorimetric, spectroscopic, and simulation studies demonstrate that the added water molecules promote the breakage of network bonds and coordination number changes, leading to lower melting and glass transition temperatures. These structural changes modify the physical and chemical properties of the melt‐quenched glass, with strong parallels to the “modifier” concept in oxides. It is shown that this approach also applies to other transition metal‐based coordination networks, and it will thus enable diversification of hybrid glass chemistry, including nonstoichiometric glass compositions, tuning of properties, and a significant rise in the number of glass‐forming hybrid systems by allowing them to melt before thermal decomposition.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
